Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
1.
Gut Microbes ; 16(1): 2301147, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38289292

RESUMO

Clostridioides difficile (C. difficile), a gram-positive anaerobic and spore-forming bacterium, is the leading cause of nosocomial antibiotic-associated diarrhea in adults which is characterized by high levels of recurrence and mortality. Surface (S)-layer Protein A (SlpA), the most abundantly expressed protein on the bacterial surface, plays a crucial role in the early stages of infection although the nature of its involvement in C. difficile physiology is yet to be fully understood. Anti-S-layer antibodies have been identified in the sera of convalescent patients and have been correlated with improved outcomes of C. difficile infection (CDI). However, the precise mechanisms by which anti-S-layer antibodies confer protection to the host remain unknown. In this study, we report the first monoclonal antibodies (mAbs) targeting the S-layer of reference strain 630. Characterization of these mAbs unraveled important roles for the S-layer protein in growth, toxin secretion, and biofilm formation by C. difficile, with differential and even opposite effects of various anti-SlpA mAbs on these functions. Moreover, one anti-SlpA mAb impaired C. difficile growth and conferred sensitivity to lysozyme-induced lysis. The results of this study show that anti-S-layer antibody responses can be beneficial or harmful for the course of CDI and provide important insights for the development of adequate S-layer-targeting therapeutics.


Assuntos
Clostridioides difficile , Microbioma Gastrointestinal , Adulto , Humanos , Anticorpos Monoclonais/uso terapêutico , Morte Celular
2.
Gut Pathog ; 16(1): 4, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38243246

RESUMO

Clostridioides difficile is the leading cause of antibiotic-associated diarrhea and pseudomembranous colitis in adults. Various C. difficile strains circulate currently, associated with different outcomes and antibiotic resistance profiles. However, most studies still focus on the reference strain 630 that does not circulate anymore, partly due to the lack of immunological tools to study current clinically important C. difficile PCR ribotypes. The goal of this study was to generate monoclonal antibodies recognizing various epidemic ribotypes of C. difficile. To do so, we immunized mice expressing human variable antibody genes with the Low Molecular Weight (LMW) subunit of the surface layer protein SlpA from various C. difficile strains. Monoclonal antibodies purified from hybridomas bound LMW with high-affinity and whole bacteria from current C. difficile ribotypes with different cross-specificities. This first collection of anti-C. difficile mAbs represent valuable tools for basic and clinical research.

3.
bioRxiv ; 2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37786668

RESUMO

Stickland-fermenting Clostridia preferentially ferment amino acids to generate energy and anabolic substrates for growth. In gut ecosystems, these species prefer dual redox substrates, particularly mucin-abundant leucine. Here, we establish how theronine, a more prevalent, mucinabundant substrate, supports dual redox metabolism in the pathogen Clostridioides difficile. Realtime, High-Resolution Magic Angle Spinning NMR spectroscopy, with dynamic flux balance analyses, inferred dynamic recruitment of four distinct threonine fermentation pathways, including ones with intermediate accrual that supported changing cellular needs for energy, redox metabolism, nitrogen cycling, and growth. Model predictions with 13C isotopomer analyses of [U-13C]threonine metabolites inferred threonine's reduction to butyrate through the reductive leucine pathway, a finding confirmed by deletion of the hadA 2-hydroxyisocaproate CoA transferase. In vivo metabolomic and metatranscriptomic analyses illustrate how threonine metabolism in C. difficile and the protective commensal Paraclostridium bifermentans impacts pathogen colonization and growth, expanding the range of dual-redox substrates that modulate host risks for disease.

4.
Toxins (Basel) ; 15(7)2023 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-37505682

RESUMO

The alarming symptoms attributed to several potent clostridial toxins enabled the early identification of the causative agent of tetanus, botulism, and gas gangrene diseases, which belongs to the most famous species of pathogenic clostridia. Although Clostridioides difficile was identified early in the 20th century as producing important toxins, it was identified only 40 years later as the causative agent of important nosocomial diseases upon the advent of antibiotic therapies in hospital settings. Today, C. difficile is a leading public health issue, as it is the major cause of antibiotic-associated diarrhea in adults. In particular, severe symptoms within the spectrum of C. difficile infections are directly related to the levels of toxins produced in the host. This highlights the importance of understanding the regulation of toxin synthesis in the pathogenicity process of C. difficile, whose regulatory factors in response to the gut environment were first identified at the Institut Pasteur. Subsequently, the work of other groups in the field contributed to further deciphering the complex mechanisms controlling toxin production triggered by the intestinal dysbiosis states during infection. This review summarizes the Pasteurian contribution to clostridial toxin regulation studies.


Assuntos
Toxinas Bacterianas , Clostridioides difficile , Infecções por Clostridium , Humanos , Toxinas Bacterianas/genética , Toxinas Bacterianas/toxicidade , Enterotoxinas , Antibacterianos , Expressão Gênica , Proteínas de Bactérias/genética
5.
bioRxiv ; 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37292778

RESUMO

Clostridioides difficile (CD) is a sporulating and toxin-producing nosocomial pathogen that opportunistically infects the gut, particularly in patients with depleted microbiota after antibiotic exposure. Metabolically, CD rapidly generates energy and substrates for growth from Stickland fermentations of amino acids, with proline being a preferred reductive substrate. To investigate the in vivo effects of reductive proline metabolism on C. difficile's virulence in an enriched gut nutrient environment, we evaluated wild-type and isogenic ΔprdB strains of ATCC43255 on pathogen behaviors and host outcomes in highly susceptible gnotobiotic mice. Mice infected with the ΔprdB mutant demonstrated extended survival via delayed colonization, growth and toxin production but ultimately succumbed to disease. In vivo transcriptomic analyses demonstrated how the absence of proline reductase activity more broadly disrupted the pathogen's metabolism including failure to recruit oxidative Stickland pathways, ornithine transformations to alanine, and additional pathways generating growth-promoting substrates, contributing to delayed growth, sporulation, and toxin production. Our findings illustrate the central role for proline reductase metabolism to support early stages of C. difficile colonization and subsequent impact on the pathogen's ability to rapidly expand and cause disease.

6.
NPJ Biofilms Microbiomes ; 9(1): 24, 2023 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-37169797

RESUMO

The ability of bacterial pathogens to establish recurrent and persistent infections is frequently associated with their ability to form biofilms. Clostridioides difficile infections have a high rate of recurrence and relapses and it is hypothesized that biofilms are involved in its pathogenicity and persistence. Biofilm formation by C. difficile is still poorly understood. It has been shown that specific molecules such as deoxycholate (DCA) or metronidazole induce biofilm formation, but the mechanisms involved remain elusive. In this study, we describe the role of the C. difficile lipoprotein CD1687 during DCA-induced biofilm formation. We showed that the expression of CD1687, which is part of an operon within the CD1685-CD1689 gene cluster, is controlled by multiple transcription starting sites and some are induced in response to DCA. Only CD1687 is required for biofilm formation and the overexpression of CD1687 is sufficient to induce biofilm formation. Using RNAseq analysis, we showed that CD1687 affects the expression of transporters and metabolic pathways and we identified several potential binding partners by pull-down assay, including transport-associated extracellular proteins. We then demonstrated that CD1687 is surface exposed in C. difficile, and that this localization is required for DCA-induced biofilm formation. Given this localization and the fact that C. difficile forms eDNA-rich biofilms, we confirmed that CD1687 binds DNA in a non-specific manner. We thus hypothesize that CD1687 is a component of the downstream response to DCA leading to biofilm formation by promoting interaction between the cells and the biofilm matrix by binding eDNA.


Assuntos
Clostridioides difficile , Clostridioides difficile/genética , Clostridioides , Proteínas de Ligação a DNA/metabolismo , Biofilmes , Lipoproteínas/genética , Lipoproteínas/metabolismo , Ácido Desoxicólico/farmacologia , Ácido Desoxicólico/metabolismo
7.
Biofilm ; 5: 100125, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37214349

RESUMO

Clostridioides difficile infection associated to gut microbiome dysbiosis is the leading cause for nosocomial diarrhea. The ability of C. difficile to form biofilms has been progressively linked to its pathogenesis as well as its persistence in the gut. Although C. difficile has been reported to form biofilms in an increasing number of conditions, little is known about how these biofilms are formed in the gut and what factors may trigger their formation. Here we report that succinate, a metabolite abundantly produced by the dysbiotic gut microbiota, induces in vitro biofilm formation of C. difficile strains. We characterized the morphology and spatial composition of succinate-induced biofilms, and compared to non-induced or deoxycholate (DCA) induced biofilms. Biofilms induced by succinate are significantly thicker, structurally more complex, and poorer in proteins and exopolysaccharides (EPS). We then applied transcriptomics and genetics to characterize the early stages of succinate-induced biofilm formation and we showed that succinate-induced biofilm results from major metabolic shifts and cell-wall composition changes. Similar to DCA-induced biofilms, biofilms induced by succinate depend on the presence of a rapidly metabolized sugar. Finally, although succinate can be consumed by the bacteria, we found that the extracellular succinate is in fact responsible for the induction of biofilm formation through complex regulation involving global metabolic regulators and the osmotic stress response. Thus, our work suggests that as a gut signal, succinate may drive biofilm formation and help persistence of C. difficile in the gut, increasing the risk of relapse.

8.
Nat Chem Biol ; 19(5): 556-564, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36894723

RESUMO

Anaerobic microbial metabolism drives critical functions within global ecosystems, host-microbiota interactions, and industrial applications, yet remains ill-defined. Here we advance a versatile approach to elaborate cellular metabolism in obligate anaerobes using the pathogen Clostridioides difficile, an amino acid and carbohydrate-fermenting Clostridia. High-resolution magic angle spinning nuclear magnetic resonance (NMR) spectroscopy of C. difficile, grown with fermentable 13C substrates, informed dynamic flux balance analysis (dFBA) of the pathogen's genome-scale metabolism. Analyses identified dynamic recruitment of oxidative and supporting reductive pathways, with integration of high-flux amino acid and glycolytic metabolism at alanine's biosynthesis to support efficient energy generation, nitrogen handling and biomass generation. Model predictions informed an approach leveraging the sensitivity of 13C NMR spectroscopy to simultaneously track cellular carbon and nitrogen flow from [U-13C]glucose and [15N]leucine, confirming the formation of [13C,15N]alanine. Findings identify metabolic strategies used by C. difficile to support its rapid colonization and expansion in gut ecosystems.


Assuntos
Clostridioides difficile , Anaerobiose , Ecossistema , Espectroscopia de Ressonância Magnética/métodos , Aminoácidos , Alanina
9.
Sci Signal ; 15(750): eabn8171, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-36067333

RESUMO

To colonize the host and cause disease, the human enteropathogen Clostridioides difficile must sense, respond, and adapt to the harsh environment of the gastrointestinal tract. We showed that the production and degradation of cyclic diadenosine monophosphate (c-di-AMP) were necessary during different phases of C. difficile growth, environmental adaptation, and infection. The production of this nucleotide second messenger was essential for growth because it controlled the uptake of potassium and also contributed to biofilm formation and cell wall homeostasis, whereas its degradation was required for osmotolerance and resistance to detergents and bile salts. The c-di-AMP binding transcription factor BusR repressed the expression of genes encoding the compatible solute transporter BusAA-AB. Compared with the parental strain, a mutant lacking BusR was more resistant to hyperosmotic and bile salt stresses, whereas a mutant lacking BusAA was more susceptible. A short exposure of C. difficile cells to bile salts decreased intracellular c-di-AMP concentrations, suggesting that changes in membrane properties induce alterations in the intracellular c-di-AMP concentration. A C. difficile strain that could not degrade c-di-AMP failed to persist in a mouse gut colonization model as long as the wild-type strain did. Thus, the production and degradation of c-di-AMP in C. difficile have pleiotropic effects, including the control of osmolyte uptake to confer osmotolerance and bile salt resistance, and its degradation is important for host colonization.


Assuntos
Clostridioides difficile , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Ácidos e Sais Biliares , Clostridioides , Clostridioides difficile/genética , Fosfatos de Dinucleosídeos , Humanos , Camundongos
10.
Microb Genom ; 8(5)2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35550024

RESUMO

Clostridium neonatale is a potential opportunistic pathogen recovered from faecal samples in cases of necrotizing enterocolitis (NEC), a gastrointestinal disease affecting preterm neonates. Although the C. neonatale species description and name validation were published in 2018, comparative genomics are lacking. In the present study, we provide the closed genome assembly of the C. neonatale ATCC BAA-265T (=250.09) reference strain with a manually curated functional annotation of the coding sequences. Pan-, core- and accessory genome analyses were performed using the complete 250.09 genome (4.7 Mb), three new assemblies (4.6-5.6 Mb), and five publicly available draft genome assemblies (4.6-4.7 Mb). The C. neonatale pan-genome contains 6840 genes, while the core-genome has 3387 genes. Pan-genome analysis revealed an 'open' state and genomic diversity. The strain-specific gene families ranged from five to 742 genes. Multiple mobile genetic elements were predicted, including a total of 201 genomic islands, 13 insertion sequence families, one CRISPR-Cas type I-B system and 15 predicted intact prophage signatures. Primary virulence classes including offensive, defensive, regulation of virulence-associated genes and non-specific virulence factors were identified. The presence of a tet(W/N/W) gene encoding a tetracycline resistance ribosomal protection protein and a 23S rRNA methyltransferase ermQ gene were identified in two different strains. Together, our results revealed a genetic diversity and plasticity of C. neonatale genomes and provide a comprehensive view of this species genomic features, paving the way for the characterization of its biological capabilities.


Assuntos
Clostridium , Genoma Bacteriano , Clostridium/genética , Variação Genética , Humanos , Recém-Nascido , Filogenia
11.
Proc Natl Acad Sci U S A ; 119(7)2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35145026

RESUMO

Bacteroides thetaiotaomicron is a gut symbiont that inhabits the mucus layer and adheres to and metabolizes food particles, contributing to gut physiology and maturation. Although adhesion and biofilm formation could be key features for B. thetaiotaomicron stress resistance and gut colonization, little is known about the determinants of B. thetaiotaomicron biofilm formation. We previously showed that the B. thetaiotaomicron reference strain VPI-5482 is a poor in vitro biofilm former. Here, we demonstrated that bile, a gut-relevant environmental cue, triggers the formation of biofilm in many B. thetaiotaomicron isolates and common gut Bacteroidales species. We determined that bile-dependent biofilm formation involves the production of the DNase BT3563 or its homologs, degrading extracellular DNA (eDNA) in several B. thetaiotaomicron strains. Our study therefore shows that, although biofilm matrix eDNA provides a biofilm-promoting scaffold in many studied Firmicutes and Proteobacteria, BT3563-mediated eDNA degradation is required to form B. thetaiotaomicron biofilm in the presence of bile.


Assuntos
Proteínas de Bactérias/metabolismo , Bacteroides thetaiotaomicron/enzimologia , Bile/metabolismo , Biofilmes/crescimento & desenvolvimento , Desoxirribonucleases/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Proteínas de Bactérias/genética , Bacteroides thetaiotaomicron/genética , Bacteroides thetaiotaomicron/fisiologia , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Desoxirribonucleases/genética , Regulação Enzimológica da Expressão Gênica/fisiologia
12.
Toxins (Basel) ; 14(2)2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35202151

RESUMO

Protein secretion is generally mediated by a series of distinct pathways in bacteria. Recently, evidence of a novel bacterial secretion pathway involving a bacteriophage-related protein has emerged. TcdE, a holin-like protein encoded by toxigenic isolates of Clostridioides difficile, mediates the release of the large clostridial glucosylating toxins (LCGTs), TcdA and TcdB, and TpeL from C. perfringens uses another holin-like protein, TpeE, for its secretion; however, it is not yet known if TcdE or TpeE secretion is specific to these proteins. It is also unknown if other members of the LCGT-producing clostridia, including Paeniclostridium sordellii (previously Clostridium sordellii), use a similar toxin-release mechanism. Here, we confirm that each of the LCGT-producing clostridia encode functional holin-like proteins in close proximity to the toxin genes. To characterise the respective roles of these holin-like proteins in the release of the LCGTs, P. sordellii and its lethal toxin, TcsL, were used as a model. Construction and analysis of mutants of the P. sordellii tcsE (holin-like) gene demonstrated that TcsE plays a significant role in TcsL release. Proteomic analysis of the secretome from the tcsE mutant confirmed that TcsE is required for efficient TcsL secretion. Unexpectedly, comparative sample analysis showed that TcsL was the only protein significantly altered in its release, suggesting that this holin-like protein has specifically evolved to function in the release of this important virulence factor. This specificity has, to our knowledge, not been previously shown and suggests that this protein may function as part of a specific mechanism for the release of all LCGTs.


Assuntos
Toxinas Bacterianas/metabolismo , Clostridium sordellii/metabolismo , Animais , Toxinas Bacterianas/genética , Chlorocebus aethiops , Clostridioides difficile/genética , Clostridioides difficile/metabolismo , Clostridium perfringens/genética , Clostridium perfringens/metabolismo , Clostridium sordellii/genética , Células Vero
13.
Curr Opin Microbiol ; 66: 39-45, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34933207

RESUMO

Clostridioides difficile is an opportunistic pathogen that causes by a high rate of recurrent infections. Persistence in the gastrointestinal tract is thought to be mediated by sporulation and/or biofilm formation. There is an increase interest in C. difficile biofilm formation and recent findings have provided a framework to model surface-attached biofilm formation. For in vitro biofilm formation, C. difficile must undergo a metabolic reprogramming as it enters stationary phase. This helps maintain long-term viability and increases responsiveness to signals leading to biofilm formation. Metabolic reprogramming and biofilm formation requires several regulatory factors and these overlap with the sporulation cascade. Despite recent advances, further research is needed to answer outstanding questions in the field.


Assuntos
Clostridioides difficile , Infecções por Clostridium , Biofilmes , Clostridioides , Clostridioides difficile/genética , Humanos
14.
Cell Host Microbe ; 29(11): 1709-1723.e5, 2021 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-34637780

RESUMO

We present predictive models for comprehensive systems analysis of Clostridioides difficile, the etiology of pseudomembranous colitis. By leveraging 151 published transcriptomes, we generated an EGRIN model that organizes 90% of C. difficile genes into a transcriptional regulatory network of 297 co-regulated modules, implicating genes in sporulation, carbohydrate transport, and metabolism. By advancing a metabolic model through addition and curation of metabolic reactions including nutrient uptake, we discovered 14 amino acids, diverse carbohydrates, and 10 metabolic genes as essential for C. difficile growth in the intestinal environment. Finally, we developed a PRIME model to uncover how EGRIN-inferred combinatorial gene regulation by transcription factors, such as CcpA and CodY, modulates essential metabolic processes to enable C. difficile growth relative to commensal colonization. The C. difficile interactive web portal provides access to these model resources to support collaborative systems-level studies of context-specific virulence mechanisms in C. difficile.


Assuntos
Clostridioides difficile , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Clostridioides , Clostridioides difficile/genética , Regulação Bacteriana da Expressão Gênica , Redes e Vias Metabólicas/genética , Análise de Sistemas
15.
Cell Host Microbe ; 29(11): 1693-1708.e7, 2021 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-34637781

RESUMO

Leveraging systems biology approaches, we illustrate how metabolically distinct species of Clostridia protect against or worsen Clostridioides difficile infection in mice by modulating the pathogen's colonization, growth, and virulence to impact host survival. Gnotobiotic mice colonized with the amino acid fermenter Paraclostridium bifermentans survive infection with reduced disease severity, while mice colonized with the butyrate-producer, Clostridium sardiniense, succumb more rapidly. Systematic in vivo analyses revealed how each commensal alters the gut-nutrient environment to modulate the pathogen's metabolism, gene regulatory networks, and toxin production. Oral administration of P. bifermentans rescues conventional, clindamycin-treated mice from lethal C. difficile infection in a manner similar to that of monocolonized animals, thereby supporting the therapeutic potential of this commensal species. Our findings lay the foundation for mechanistically informed therapies to counter C. difficile disease using systems biology approaches to define host-commensal-pathogen interactions in vivo.


Assuntos
Clostridiales/fisiologia , Clostridioides difficile/patogenicidade , Infecções por Clostridium/microbiologia , Infecções por Clostridium/terapia , Clostridium/fisiologia , Simbiose , Aminoácidos/metabolismo , Animais , Arginina/metabolismo , Butiratos/metabolismo , Ceco/metabolismo , Ceco/microbiologia , Clostridiales/crescimento & desenvolvimento , Clostridioides difficile/genética , Clostridioides difficile/fisiologia , Clostridium/crescimento & desenvolvimento , Fermentação , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Redes Reguladoras de Genes , Vida Livre de Germes , Camundongos , Índice de Gravidade de Doença , Biologia de Sistemas , Virulência
16.
Microorganisms ; 9(9)2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34576818

RESUMO

The microbiota inhabiting the intestinal tract provide several critical functions to its host. Microorganisms found at the mucosal layer form organized three-dimensional structures which are considered to be biofilms. Their development and functions are influenced by host factors, host-microbe interactions, and microbe-microbe interactions. These structures can dictate the health of their host by strengthening the natural defenses of the gut epithelium or cause disease by exacerbating underlying conditions. Biofilm communities can also block the establishment of pathogens and prevent infectious diseases. Although these biofilms are important for colonization resistance, new data provide evidence that gut biofilms can act as a reservoir for pathogens such as Clostridioides difficile. In this review, we will look at the biofilms of the intestinal tract, their contribution to health and disease, and the factors influencing their formation. We will then focus on the factors contributing to biofilm formation in C. difficile, how these biofilms are formed, and their properties. In the last section, we will look at how the gut microbiota and the gut biofilm influence C. difficile biofilm formation, persistence, and transmission.

17.
ISME J ; 15(12): 3623-3635, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34155333

RESUMO

Clostridioides difficile infections are associated with gut microbiome dysbiosis and are the leading cause of hospital-acquired diarrhoea. The infectious process is strongly influenced by the microbiota and successful infection relies on the absence of specific microbiota-produced metabolites. Deoxycholate and short-chain fatty acids are microbiota-produced metabolites that limit the growth of C. difficile and protect the host against this infection. In a previous study, we showed that deoxycholate causes C. difficile to form strongly adherent biofilms after 48 h. Here, our objectives were to identify and characterize key molecules and events required for biofilm formation in the presence of deoxycholate. We applied time-course transcriptomics and genetics to identify sigma factors, metabolic processes and type IV pili that drive biofilm formation. These analyses revealed that extracellular pyruvate induces biofilm formation in the presence of deoxycholate. In the absence of deoxycholate, pyruvate supplementation was sufficient to induce biofilm formation in a process that was dependent on pyruvate uptake by the membrane protein CstA. In the context of the human gut, microbiota-generated pyruvate is a metabolite that limits pathogen colonization. Taken together our results suggest that pyruvate-induced biofilm formation might act as a key process driving C. difficile persistence in the gut.


Assuntos
Clostridioides difficile , Infecções por Clostridium , Biofilmes , Clostridioides , Humanos , Ácido Pirúvico
18.
mBio ; 12(3)2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-34006648

RESUMO

Cell growth and division require a balance between synthesis and hydrolysis of the peptidoglycan (PG). Inhibition of PG synthesis or uncontrolled PG hydrolysis can be lethal for the cells, making it imperative to control peptidoglycan hydrolase (PGH) activity. The synthesis or activity of several key enzymes along the PG biosynthetic pathway is controlled by the Hanks-type serine/threonine kinases (STKs). In Gram-positive bacteria, inactivation of genes encoding STKs is associated with a range of phenotypes, including cell division defects and changes in cell wall metabolism, but only a few kinase substrates and associated mechanisms have been identified. We previously demonstrated that STK-PrkC plays an important role in cell division, cell wall metabolism, and resistance to antimicrobial compounds in the human enteropathogen Clostridioides difficile In this work, we characterized a PG hydrolase, CwlA, which belongs to the NlpC/P60 family of endopeptidases and hydrolyses cross-linked PG between daughter cells to allow cell separation. We identified CwlA as the first PrkC substrate in C. difficile We demonstrated that PrkC-dependent phosphorylation inhibits CwlA export, thereby controlling hydrolytic activity in the cell wall. High levels of CwlA at the cell surface led to cell elongation, whereas low levels caused cell separation defects. Thus, we provided evidence that the STK signaling pathway regulates PGH homeostasis to precisely control PG hydrolysis during cell division.IMPORTANCE Bacterial cells are encased in a PG exoskeleton that helps to maintain cell shape and confers physical protection. To allow bacterial growth and cell separation, PG needs to be continuously remodeled by hydrolytic enzymes that cleave PG at critical sites. How these enzymes are regulated remains poorly understood. We identify a new PG hydrolase involved in cell division, CwlA, in the enteropathogen C. difficile Lack or accumulation of CwlA at the bacterial surface is responsible for a division defect, while its accumulation in the absence of PrkC also increases susceptibility to antimicrobial compounds targeting the cell wall. CwlA is a substrate of the kinase PrkC in C. difficile PrkC-dependent phosphorylation controls the export of CwlA, modulating its levels and, consequently, its activity in the cell wall. This work provides a novel regulatory mechanism by STK in tightly controlling protein export.


Assuntos
Proteínas de Bactérias/metabolismo , Divisão Celular/genética , Clostridioides difficile/metabolismo , N-Acetil-Muramil-L-Alanina Amidase/genética , N-Acetil-Muramil-L-Alanina Amidase/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Proteínas de Bactérias/genética , Divisão Celular/fisiologia , Clostridioides difficile/enzimologia , Clostridioides difficile/genética , Peptidoglicano/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/genética
19.
J Am Chem Soc ; 143(10): 3697-3702, 2021 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-33651603

RESUMO

Cyclic polymers display unique physicochemical and biological properties. However, their development is often limited by their challenging preparation. In this work, we present a simple route to cyclic poly(α-peptoids) from N-alkylated-N-carboxyanhydrides (NNCA) using LiHMDS promoted ring-expansion polymerization (REP) in DMF. This new method allows the unprecedented use of lysine-like monomers in REP to design bioactive macrocycles bearing pharmaceutical potential against Clostridioides difficile, a bacterium responsible for nosocomial infections.


Assuntos
Peptoides/química , Polímeros/química , Compostos de Trimetilsilil/química , Catálise , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Clostridioides difficile/efeitos dos fármacos , Ciclização , Teoria da Densidade Funcional , Humanos , Testes de Sensibilidade Microbiana , Polimerização , Polímeros/síntese química , Polímeros/farmacologia
20.
RNA Biol ; 18(11): 1931-1952, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33629931

RESUMO

Noncoding RNAs (ncRNA) have emerged as important components of regulatory networks governing bacterial physiology and virulence. Previous deep-sequencing analysis identified a large diversity of ncRNAs in the human enteropathogen Clostridioides (Clostridium) difficile. Some of them are trans-encoded RNAs that could require the RNA chaperone protein Hfq for their action. Recent analysis suggested a pleiotropic role of Hfq in C. difficile with the most pronounced effect on sporulation, a key process during the infectious cycle of this pathogen. However, a global view of RNAs interacting with C. difficile Hfq is missing. In the present study, we performed RNA immunoprecipitation high-throughput sequencing (RIP-Seq) to identify Hfq-associated RNAs in C. difficile. Our work revealed a large set of Hfq-interacting mRNAs and ncRNAs, including mRNA leaders and coding regions, known and potential new ncRNAs. In addition to trans-encoded RNAs, new categories of Hfq ligands were found including cis-antisense RNAs, riboswitches and CRISPR RNAs. ncRNA-mRNA and ncRNA-ncRNA pairings were postulated through computational predictions. Investigation of one of the Hfq-associated ncRNAs, RCd1, suggests that this RNA contributes to the control of late stages of sporulation in C. difficile. Altogether, these data provide essential molecular basis for further studies of post-transcriptional regulatory network in this enteropathogen.


Assuntos
Clostridioides difficile/crescimento & desenvolvimento , Clostridioides/fisiologia , Regulação Bacteriana da Expressão Gênica , Fator Proteico 1 do Hospedeiro/metabolismo , RNA Bacteriano/metabolismo , Esporos Bacterianos/fisiologia , Virulência , Clostridioides difficile/genética , Clostridioides difficile/metabolismo , Genoma Bacteriano , Fator Proteico 1 do Hospedeiro/genética , Humanos , RNA Bacteriano/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...